(x+sin(x))/(4cos(x)-4)
首先改写降次:
xcos^4(x/2)/sin^3(x) = 1/8 xcot(x/2)csc^2(x/2) ... 注:csc(x)=1/sin(x)
换元积分:令u=x/2: dx=2du,
∫ 1/8 xcot(u)csc^2(u) 2du
=1/8 * 2 * 2 ∫ ucot(u)csc^2(u) du
然后分部积分,
=1/2 u(-1/2cot^2(u)- ∫ (-1/2cot^2(u) du
=1/2 u (-1/2cot^2(u)- (-1/2(-u-cot(u))
代入x/2=u,
=1/2 (x/2)(-1/2cot^2(x/2)- (-1/2(-x/2-cot(x/2))
=1/8 (-x- xcot^2(x/2)- 2cot(x/2))
整理,
=(x+sin(x))/(4cos(x)-4)