$$
lim_{x to 0} frac{1 - cos x}{1 + cos x} = frac{1 - 1}{1 + 1} = 0.
$$
极限为 0。
(1)y=(sin2xsinx)/(1-cosx)=2cosxsin^2x/(1-cosx)=2cosx(1+cosx)
=2(cosx+cos^2x) =2(cosx +0.5)^2-0.5
-1/2≤cosx+1/2≤3/2
0≤(cosx+1/2)^2≤9/4
所以y属于[-1/2,4]
(2)因为(sinx+cosx)^2=1+2sinxcosx
sinxcosx=[(sinx+cosx)^2-1]/2
令sinx+cosx=t t=√2sin(x+π/4)
-√2≤t≤√2
y=sinxcosx+sinx+cosx
=(t^2-1)/2+t
=t^2/2+t-1/2
=1/2(t+1)^2-1
对称轴t=-1
y在[-√2,-1]上单调递减
在[-1,√2]上单调递增
t=-1 最小值y=-1
t=√2 最大值y=(1+2√2)/2
所以函数y=sinxcosx+sinx+cosx 的值域[-1,(1+2√2)/2]
(3)
∵y=2cos(π/3+ x) +2cosx
=2cosπ/3cosx-2sinπ/3sinx +2cosx
=3cosx-√3sinx
=2√3cos(x+ π/3)。
∵-1≤cos(x+ π/3)≤1
∴-2√3≤2√3cos(x+ π/3)≤2√3
可根据导数的定义得 x趋于0,[1-cos(x^2)]/(1-cosx)的极限 =[cos0^2-cos(x^2)]/(cos0-cosx)的极限 =x{[cos0^2-cos(x^2)]/(0^2-x^2)}除以 [(cos0-cosx)/(0-x)] 的极限 =x乘以cos(x^2)的导数/cosx的数 的极限 =x*[-2sin(x^2)}/(-sinx) 的极限 =2sin(x^2)*[x/sinx] 的极限 =2sin(x^2)*[(x-0)/(sinx-sin0)] 的极限 =2sin(x^2)*[1/(sinx的导数)] 的极限 =2sin(x^2)*(1/cosx) 的极限 =2sin(0^2)*(1/cos0)=0