1)m∥n, ∴b/(2a-c)=cosb/cosc 正弦定理:a/sina=b/sinb=c/sinc ∴b/(2a-c)=sinb/(2sina-sinc)=cosb/cosc ∴2sinacosb=sinccosb sinbcosc=sin(b c)=sin(180°-a)=sina ∴cosb=1/2, b=60° 2)c=120°-a y=cos?a cos?c=(1 cos2a)/2 (1 cos2c)/2=1 (1/2)[cos2a cos2(120°-a)] =1 (1/2)[cos2a cos(240°-2a)]=1 (1/2)[cos2a-(1/2)cos2a-(√3/2)sin2a] =1 (1/2)[(1/2)cos2a-(√3/2)sin2a]=1 (1/2)cos(2a 60°) ∵0°<120°, ∴60°<2a 60°<300°, -1<=sin(2a 60°)<1/2 ∴1/2<=y<5/4, 即y取值范围为[1/2,5/4)