cos(x+π/6)=4/5,求sin(2x+π/12)
解:∵cos(x+π/6)=4/5,∴x+π/6=arccos(4/5),x=arccos(4/5)-π/6
于是sin(2x+π/12)=sin[2arccos(4/5)-π/3+π/12]=sin[2arccos(4/5)-π/4]
=sin[2arccos(4/5)]cos(π/4)-cos[2arccos(4/5)]sin(π/4)
=(√2/2)[2sinarccos(4/5)][cosarccos(4/5)]-(√2/2)[2cos?arccos(4/5)-1]
=(√2)[√(1-16/25)](4/5)-(√2)(4/5)?+√2/2
=(√2)[(3/5)(4/5)-(16/25)+1/2]
=(√2)[(12/25)-(16/25)+1/2]
=(17/50)√2.
解:∵cos(x+π/6)=4/5,∴x+π/6=arccos(4/5),x=arccos(4/5)-π/6
于是sin(2x+π/12)=sin[2arccos(4/5)-π/3+π/12]=sin[2arccos(4/5)-π/4]
=sin[2arccos(4/5)]cos(π/4)-cos[2arccos(4/5)]sin(π/4)
=(√2/2)[2sinarccos(4/5)][cosarccos(4/5)]-(√2/2)[2cos?arccos(4/5)-1]
=(√2)[√(1-16/25)](4/5)-(√2)(4/5)?+√2/2
=(√2)[(3/5)(4/5)-(16/25)+1/2]
=(√2)[(12/25)-(16/25)+1/2]
=(17/50)√2.
