解:设x1,x2,x3,x4的平均数是X,则
X=?(x1+x2+x3+x4)
方差是:S?=?[(X1-X)?+(X2-X)?+(X3-X)?+(X4-X)?]
数据4x1+1,4x2+1,4x3+1,,4x4+1的平均数是
X′=?(4x1+1+4x2+1+4x3+1+4x4+1)
=?[4(X1+X2+X3+X4)+4]
=X1+X2+X3+X4+1
=4X+1
数据4x1+1,4x2+1,4x3+1,,4x4+1的方差是:
S′?=?[(4x1+1-X′)?+(4x2+1-X′)?+(4x3+1-X′)?+(4x4+1-X′)?]
=?[(4x1+1-4X-1)?+(4x2+1-4X-1)?+(4x3+1-4X-1)?+(4x4+1-4X-1)?]
=?[ (4X1-4X)?+(4X2-4X)?+(4X3-4X)?+(4X4-4X)?]
=?[ 4?(X1-X)?+ 4?(X2-X)?+ 4?(X3-X)?+ 4?(X4-X)?+]
=?×4? [ (X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?]
=4?×{?[ (X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?]}
=16×S?
=16×3
=48
X=?(x1+x2+x3+x4)
方差是:S?=?[(X1-X)?+(X2-X)?+(X3-X)?+(X4-X)?]
数据4x1+1,4x2+1,4x3+1,,4x4+1的平均数是
X′=?(4x1+1+4x2+1+4x3+1+4x4+1)
=?[4(X1+X2+X3+X4)+4]
=X1+X2+X3+X4+1
=4X+1
数据4x1+1,4x2+1,4x3+1,,4x4+1的方差是:
S′?=?[(4x1+1-X′)?+(4x2+1-X′)?+(4x3+1-X′)?+(4x4+1-X′)?]
=?[(4x1+1-4X-1)?+(4x2+1-4X-1)?+(4x3+1-4X-1)?+(4x4+1-4X-1)?]
=?[ (4X1-4X)?+(4X2-4X)?+(4X3-4X)?+(4X4-4X)?]
=?[ 4?(X1-X)?+ 4?(X2-X)?+ 4?(X3-X)?+ 4?(X4-X)?+]
=?×4? [ (X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?]
=4?×{?[ (X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?+(X1-X)?]}
=16×S?
=16×3
=48